## Normalization Examples

## Example I

Take the following table.

StudentID is the primary key.

| StudentID | StudentName | Address           | HouseName | HouseColor | Subject          | SubjectCost  | Grade  |
|-----------|-------------|-------------------|-----------|------------|------------------|--------------|--------|
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | English<br>Maths | \$50<br>\$50 | B<br>A |
|           |             |                   |           |            | Info Tech        | \$100        | B+     |

## Is it 1NF?

# No. There are repeating groups (subject, subjectcost, grade)

| StudentID | StudentName | Address           | HouseName | HouseColor | Subject                       | SubjectCost           | Grade        |
|-----------|-------------|-------------------|-----------|------------|-------------------------------|-----------------------|--------------|
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | English<br>Maths<br>Info Tech | \$50<br>\$50<br>\$100 | B<br>A<br>B+ |

#### How can you make it 1NF?

# Create new rows so each cell contains only one value

| StudentID | StudentName | Address           | HouseName                               | HouseColor | Subject   | SubjectCost | Grade |
|-----------|-------------|-------------------|-----------------------------------------|------------|-----------|-------------|-------|
| 19594332X | Mary Watson | 10 Charles Street | Bob                                     | Red        | English   | \$50        | В     |
|           |             |                   | 1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 |            | Maths     | \$50        | A     |
|           |             |                   |                                         |            | Info Tech | \$100       | B+    |



| StudentID | StudentName | Address           | HouseName | HouseColor | Subject   | SubjectCost | Grade |
|-----------|-------------|-------------------|-----------|------------|-----------|-------------|-------|
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | English   | \$50        | В     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Maths     | \$50        | A     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Info Tech | \$100       | B+    |

# But now look – is the *studentID* primary key still valid?

# No – the studentID no longer uniquely identifies each row

| StudentID | StudentName | Address           | HouseName | HouseColor | Subject   | SubjectCost | Grade |
|-----------|-------------|-------------------|-----------|------------|-----------|-------------|-------|
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | English   | \$50        | В     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Maths     | \$50        | A     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Info Tech | \$100       | B+    |
|           |             |                   |           |            | N N       |             |       |

You now need to declare *StudentID* and *Subject* together to uniquely identify each row.

So the new key is StudentID and Subject.

#### So. We now have 1NF.

| StudentID | StudentName | Address           | HouseName | HouseColor | Subject   | SubjectCost | Grade |
|-----------|-------------|-------------------|-----------|------------|-----------|-------------|-------|
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | English   | \$50        | В     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Maths     | \$50        | A     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Info Tech | \$100       | B+    |

## Is it 2NF?

(StudentID, Subject) StudentID -> StudentName

## StudentName and Address are dependent on studentID (which is part of the key) This is good.

| StudentID | StudentName | Address           | HouseName | HouseColor | Subject   | SubjectCost | Grade |
|-----------|-------------|-------------------|-----------|------------|-----------|-------------|-------|
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | English   | \$50        | В     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Maths     | \$50        | A     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Info Tech | \$100       | B+    |

# But they are **not** dependent on *Subject* (the *other* part of the key)

#### And 2NF requires...

| StudentID | StudentName | Address           | HouseName | HouseColor | Subject   | SubjectCost | Grade |
|-----------|-------------|-------------------|-----------|------------|-----------|-------------|-------|
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | English   | \$50        | В     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Maths     | \$50        | A     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Info Tech | \$100       | B+    |

#### All non-key fields are dependent on the ENTIRE key (StudentID + Subject)

#### So it's not 2NF

| StudentID | StudentName | Address           | HouseName | HouseColor | Subject   | SubjectCost | Grade |
|-----------|-------------|-------------------|-----------|------------|-----------|-------------|-------|
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | English   | \$50        | В     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Maths     | \$50        | A     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Info Tech | \$100       | B+    |

## How can we fix it?

#### Make new tables

- Make a new table for each primary key field
- Give each new table its own primary key
- Move columns from the original table to the new table that matches their primary key

| StudentID | StudentName | Address           | HouseName | HouseColor | Subject   | SubjectCost | Grade |
|-----------|-------------|-------------------|-----------|------------|-----------|-------------|-------|
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | English   | \$50        | В     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Maths     | \$50        | A     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Info Tech | \$100       | B+    |

STUDENT TABLE (key = StudentID)

| StudentID | StudentName | Address           | HouseName | HouseColor | Subject   | SubjectCost | Grade |
|-----------|-------------|-------------------|-----------|------------|-----------|-------------|-------|
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | English   | \$50        | В     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Maths     | \$50        | A     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Info Tech | \$100       | B+    |

#### STUDENT TABLE (key = StudentID)

| StudentID | StudentName | Address           | HouseName | HouseColor |
|-----------|-------------|-------------------|-----------|------------|
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        |

SUBJECTS TABLE (key = Subject)

| StudentID | StudentName | Address           | HouseName | HouseColor | Subject   | SubjectCost | Grade |
|-----------|-------------|-------------------|-----------|------------|-----------|-------------|-------|
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | English   | \$50        | В     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Maths     | \$50        | A     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Info Tech | \$100       | B+    |

#### STUDENT TABLE (key = StudentID)

| StudentID | StudentName | Address           | HouseName | HouseColor |
|-----------|-------------|-------------------|-----------|------------|
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        |

#### SUBJECTS TABLE (key = Subject)

| Subject   | SubjectCost |
|-----------|-------------|
| English   | \$50        |
| Maths     | \$50        |
| Info Tech | \$100       |

| StudentID | StudentName | Address           | HouseName | HouseColor | Subject   | SubjectCost | Grade |
|-----------|-------------|-------------------|-----------|------------|-----------|-------------|-------|
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | English   | \$50        | В     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Maths     | \$50        | A     |
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | Info Tech | \$100       | B+    |

#### STUDENT TABLE (key = StudentID)

| StudentID | StudentName | Address           | HouseName | HouseColor |
|-----------|-------------|-------------------|-----------|------------|
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        |

#### SUBJECTS TABLE (key = Subject)

| Subject   | SubjectCost |
|-----------|-------------|
| English   | \$50        |
| Maths     | \$50        |
| Info Tech | \$100       |

| StudentID | Subject   | Grade |
|-----------|-----------|-------|
| 19594332X | English   | В     |
| 19594332X | Maths     | A     |
| 19594332X | Info Tech | B+    |

#### Step 4 - relationships

STUDENT TABLE (key = StudentID)



#### STUDENT TABLE (key = StudentID)



#### STUDENT TABLE (key = StudentID)



STUDENT TABLE (key = StudentID)



STUDENT TABLE (key = StudentID)

1



#### HouseName is dependent on both *StudentID* + *HouseColour*

#### SUBJECTS TABLE (key = Subject)

|   | Subject   | SubjectCost |
|---|-----------|-------------|
| 1 | English   | \$50        |
| 7 | Maths     | \$50        |
|   | Info Tech | \$100       |

|           | 00        |       |
|-----------|-----------|-------|
| StudentID | Subject   | Grade |
| 19594332X | English   | В     |
| 19594332X | Maths     | A     |
| 19594332X | Info Tech | B+    |

 $\sim$ 

STUDENT TABLE (key = StudentID)





STUDENT TABLE (key = StudentID)



*dependent on MORE THAN THE PRIMARY KEY* (StudentID)

 $\infty$ 

#### SUBJECTS TABLE (key = Subject)

|   | Subject   | SubjectCost |
|---|-----------|-------------|
| 1 | English   | \$50        |
| ~ | Maths     | \$50        |
|   | Info Tech | \$100       |

| StudentID | Subject   | Grade |
|-----------|-----------|-------|
| 19594332X | English   | В     |
| 19594332X | Maths     | A     |
| 19594332X | Info Tech | B+    |

STUDENT TABLE (key = StudentID)



#### STUDENT TABLE (key = StudentID)



#### Again, carve off the offending fields



#### A 3NF fix



#### A 3NF fix



#### A 3NF win!



StudentID+Subject)



## The Reveal

#### Before...

| StudentID | StudentName | Address           | HouseName | HouseColor | Subject                       | SubjectCost           | Grade        |
|-----------|-------------|-------------------|-----------|------------|-------------------------------|-----------------------|--------------|
| 19594332X | Mary Watson | 10 Charles Street | Bob       | Red        | English<br>Maths<br>Info Tech | \$50<br>\$50<br>\$100 | B<br>A<br>B+ |



## Example II

#### Normalization Example

Orders(Order, Product, Quantity, UnitPrice, Customer, Address)

- We have a table representing orders in an online store
- Each row represents an item on a particular order
- Primary key is {Order, Product}

## **Functional Dependencies**

Orders(Order, Product, Quantity, UnitPrice, Customer, Address)

- Each order is for a single customer:
  - Order  $\rightarrow$  Customer
- Each customer has a single address
  - Customer  $\rightarrow$  Address
- Each product has a single price
  - Product  $\rightarrow$  UnitPrice
- As Order  $\rightarrow$  Customer and Customer  $\rightarrow$  Address
  - Order  $\rightarrow$  Address

Order -> Customer, Address

## 2NF Solution (I)

#### • First decomposition

– First table

| <u>Order</u> | Product | Quantity | UnitPrice |
|--------------|---------|----------|-----------|
|--------------|---------|----------|-----------|

Second table

| <u>Order</u> Customer Address | <u>Order</u> | Customer | Address |
|-------------------------------|--------------|----------|---------|
|-------------------------------|--------------|----------|---------|

## 2NF Solution (II)

- Second decomposition
  - First table

Order Product Quantity

Second table

| Order | Customer | Address |
|-------|----------|---------|
|-------|----------|---------|

Third table

Product UnitPrice

## 3NF

• In second table



- Customer  $\rightarrow$  Address
- Split second table into

| Order | Customer |
|-------|----------|
|-------|----------|



#### Normalization to 2NF

- Second normal form means no partial dependencies on candidate keys
  - $\{\text{Order}\} \rightarrow \{\text{Customer, Address}\}$
  - {Product}  $\rightarrow$  {UnitPrice}
- To remove the first FD we project over {Order, Customer, Address} (R1)

and

{Order, Product, Quantity, UnitPrice} (R2)

#### Normalization to 2NF

- R1 is now in 2NF, but there is still a partial FD in R2 {Product} → {UnitPrice}
- To remove this we project over {Product, UnitPrice} (R3) and {Order, Product, Quantity} (R4)

#### Normalization to 3NF

- R has now been split into 3 relations R1, R3, and R4
  - R3 and R4 are in 3NF
  - R1 has a transitive FD on its key
- To remove

 $\{Order\} \rightarrow \{Customer\} \rightarrow \{Address\}$ 

- we project R1 over
  - {Order, Customer}
  - {Customer, Address}

#### Normalization

• 1NF:

- {<u>Order, Product</u>, Customer, Address, Quantity, UnitPrice}

- 2NF:
  - {<u>Order</u>, Customer, Address}, {<u>Product</u>, UnitPrice}, and {<u>Order, Product</u>, Quantity}
- 3NF:
  - {<u>Product</u>, UnitPrice}, {<u>Order, Product</u>, Quantity},
    {<u>Order</u>, Customer}, and {<u>Customer</u>, Address}